Magnetocrystalline anisotropy of novel $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$ compounds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys.: Condens. Matter 115313
(http://iopscience.iop.org/0953-8984/11/27/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.214
The article was downloaded on 15/05/2010 at 12:05

Please note that terms and conditions apply.

Magnetocrystalline anisotropy of novel $\mathbf{R}_{\mathbf{3}}(\mathbf{F e}, \mathbf{M})_{\mathbf{2 9}}$ compounds

N Tang \dagger, X C Kou \ddagger, F R de Boer \ddagger, K H J Buschow \ddagger, J L Wang \dagger and Fuming Yang \dagger
\dagger State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Science, Beijing 100080, People's Republic of China \ddagger Van der Waals-Zeeman Laboratory, University of Amsterdam, Valckinierstraat 65, 1018 XE Amsterdam, The Netherlands

Received 9 February 1999

Abstract

The structure and magnetic properties of novel $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$-type compounds (M is the stabilizing element) have been studied by comparing to $\mathrm{CaCu}_{5^{-}}, \mathrm{R}_{2} \mathrm{Fe}_{17^{-}}$and ThMn_{12}-type rare-earth-transition-metal compounds. A phenomenological expression of the magnetocrystalline-anisotropy energy for the monoclinic structure has been derived through symmetry analysis.

1. Introduction

Recently, the study of the magnetic properties of the new ternary phase with the $\mathrm{Nd}_{3}(\mathrm{Fe}, \mathrm{Ti})_{29}$-type structure is attracting considerable interest from both fundamental and practical points of view. This phase has been synthesized at the Fe-rich corner of the R (= rare-earth)-Fe phase diagram [1-3]. Initially, it has been reported that this phase has the nominal composition $\mathrm{Nd}_{2}(\mathrm{Fe}, \mathrm{Ti})_{19}$ and that the diffraction patterns can be indexed as a superlattice of the hexagonal cell of the TbCu_{7} type of structure. The real stoichiometric composition was later established to be 3:29. The crystallographic structure has been determined to be of the $\mathrm{Nd}_{3}(\mathrm{Fe}, \mathrm{Ti})_{29}$ type with monoclinic symmetry and $P 2_{1} / c$ space group by x-ray diffraction (XRD) and neutron powder diffraction [4-6]. Subsequent work by Kalogirou et al suggests that the $\mathrm{Nd}_{3}(\mathrm{Fe}, \mathrm{Ti})_{29}$-type structure can be described more accurately in the $A 2 / m$ space group than in the $P 2_{1} / c$ space group [7].

Like $\mathrm{R}_{2} \mathrm{Fe}_{17}$ and $\mathrm{RFe}_{12-x} \mathrm{M}_{x}$ (M is a stabilizing element) compounds, the new family of intermetallic compounds, $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$, is able to take up N and C as interstitial atoms, which leads to a remarkable improvement of the magnetic properties [8]. The interstitial nitride $\mathrm{Sm}_{3}(\mathrm{Fe}, \mathrm{Ti})_{29} \mathrm{~N}_{y}$ can be considered as a novel candidate for application in permanent magnets. Recent study on the hard magnetic properties of $\mathrm{Sm}_{3}(\mathrm{Fe}, \mathrm{M})_{29} \mathrm{~N}_{y}$ with $\mathrm{M}=\mathrm{V}, \mathrm{Cr}$ and Mo has proved the same conclusion [9-12].

The high-field magnetization and the singular point detection measurements show that Sm-based $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29} \mathrm{~N}_{y}$ compounds exhibit a large axial magnetocrystalline anisotropy that is very important for permanent magnet application; at the same time there is an obvious magnetic anisotropy in the basal-plane for the parent compounds. This suggests that the anisotropy energy in $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$ compounds with the monoclinic structure not only depends on the polar angle θ, but also on the azimuthal angle ϕ. A study of the anisotropy energy as a
function of the monoclinic structure parameters is very important, which will lead to a further understanding of the magnetocrystalline anisotropy of the novel $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29} \mathrm{~N}_{y}$ compounds.

In this paper, the structure and magnetization properties of the $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$-type compounds have been summarized in comparison with the 1:5, 1:12 and 2:17 types of structure. The magnetocrystalline anisotropy of the $\mathrm{R}_{3} \mathrm{Fe}_{29-x} \mathrm{M}_{x}$-type compounds has been studied; a phenomenological expression is presented.

2. Crystal structure

The $\mathrm{R}_{3} \mathrm{Fe}_{29-x} \mathrm{M}_{x}$ phase like $\mathrm{R}_{2} \mathrm{Fe}_{17}$ and $\mathrm{RFe}_{12-x} \mathrm{M}_{x}$ phases can be derived from the CaCu_{5} structure. Each of them represents a modification of the RT_{5} structure in which a fraction of the R atoms is replaced by T-metal dumbbells. This process may be described by [13]

$$
\begin{equation*}
\mathrm{R}_{1-\delta}(2 \mathrm{~T})_{\delta} \mathrm{T}_{5} \rightarrow \mathrm{RT}_{z} \tag{1}
\end{equation*}
$$

with the $2: 17$ structure corresponding to $\delta=1 / 3$ and the $1: 12$ structure corresponding to $\delta=1 / 2$. The new $3: 29$ structure corresponds to $\delta=2 / 5$. In the hexagonal $2: 17$ phase, this substitution may induce a substantial degree of disorder, leading to non-stoichiometric compounds and mixed stacking. In the rhombohedral $2: 17$ phase and the other two phases, this kind of substitution appears to be completely regular. The structure of $\mathrm{Nd}_{3}(\mathrm{Fe}, \mathrm{Ti})_{29}$ is intermediate between the well known rhombohedral $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ (or hexagonal $\mathrm{Th}_{2} \mathrm{Ni}_{17}$) and the tetragonal ThMn_{12} structures, and is formed by alternating stacking of $2: 17$ and $1: 12$ segments, in the ratio $1: 1$. This can be proved by the magnetization study below.

From equation (1), it is likely that, besides the 3:29 phase, other intermediate phases based on the stacking of the rhombohedral $2: 17$ and tetragonal $1: 12$ segments may exist. For example, a 2:1 stacking ($3 / 8$ dumb-bell replacement) would correspond to a $5: 46$ phase, whereas a 1:2 stacking ($3 / 7$ dumb-bell replacement) would correspond to a $4: 41$ phase. According to model descriptions which are useful in the search for novel compounds [14-16], it is reasonable to suppose that many $\mathrm{R}-\mathrm{T}$ structure types are still awaiting discovery.

In the Descartes coordinate system, with \vec{i}, \vec{j} and \vec{k} as unit vectors along the x, y and z axes, the basis vectors for the unit cells of the $1: 5,2 ; 17 \mathrm{H}, 1: 12$ and $3: 29$ structures, respectively, can be written as follows [7]:
for the $1: 5$ structure

$$
\begin{align*}
\vec{a} & =\frac{\sqrt{3}}{2} a_{0} \vec{i}+\frac{1}{2} a_{0} \vec{j} \\
\vec{b} & =-\frac{\sqrt{3}}{2} a_{0} \vec{i}+\frac{1}{2} a_{0} \vec{j} \tag{2}\\
\vec{c} & =c_{0} \vec{k}
\end{align*}
$$

for the $2: 17 \mathrm{H}$ structure

$$
\begin{align*}
\vec{a} & =\sqrt{3} a_{0}\left(\frac{1}{2} \vec{i}-\frac{\sqrt{3}}{2} \vec{j}\right) \\
\vec{b} & =\sqrt{3} a_{0}\left(\frac{1}{2} \vec{i}+\frac{\sqrt{3}}{2} \vec{j}\right) \tag{3}\\
\vec{c} & =2 c_{0} \vec{k}
\end{align*}
$$

for the $1: 12$ structure

$$
\begin{align*}
\vec{a} & =\sqrt{3} a_{0} \vec{i} \\
\vec{b} & =2 c_{0} \vec{k} \tag{4}\\
\vec{c} & =-a_{0} \vec{j}
\end{align*}
$$

for the 3:29 structure

$$
\begin{align*}
& \vec{a}=-2 a_{0} \vec{j}+c_{0} \vec{k} \\
& \vec{b}=\sqrt{3} a_{0} \vec{i} \tag{5}\\
& \vec{c}=a_{0} \vec{j}+2 c_{0} \vec{k}
\end{align*}
$$

where a_{0} and c_{0} represent the lattice parameters of the $1: 5$ unit cell. The relations between the monoclinic $\mathrm{R}_{3} \mathrm{~T}_{29-x} \mathrm{~T}_{x}(3: 29)$ structure and the RCo_{5} (1:5), the hexagonal $\mathrm{R}_{2} \mathrm{~T}_{17}(2: 17 \mathrm{H})$ and the tetragonal $\mathrm{RT}_{12-x} \mathrm{M}_{x}$ (1:12) are given by the vector transformations in reciprocal space:

$$
\begin{align*}
& \left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)_{3: 29}=\left(\begin{array}{ccc}
-2 & -2 & 1 \\
1 & -1 & 0 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)_{1: 5} \\
& \left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)_{3: 29}=\left(\begin{array}{ccc}
0 & 1 / 2 & 2 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)_{1: 12} \tag{6}\\
& \left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)_{3: 29}=\left(\begin{array}{ccc}
2 / 3 & -2 / 3 & 1 / 2 \\
1 & 1 & 0 \\
-1 / 3 & 1 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
h \\
k \\
l
\end{array}\right)_{2: 17 H}
\end{align*}
$$

Therefore the coordinate transformation relationship of the 3:29 phase with the 1:5, 1:12 and $2: 17 \mathrm{H}$ phases is represented by:

$$
\begin{align*}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{3: 29}=\left(\begin{array}{ccc}
1 / 5 & -1 / 5 & 1 / 5 \\
1 / 2 & -1 / 2 & 0 \\
1 / 10 & 1 / 10 & 2 / 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{1: 5} \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{3: 29}=\left(\begin{array}{ccc}
0 & 2 / 5 & -2 / 5 \\
-1 & 0 & 0 \\
0 & 4 / 5 & 1 / 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{1: 12} \tag{7}\\
& \left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)_{3: 29}=\left(\begin{array}{cccc}
-3 / 5 & 3 / 5 & 2 / 5 & -1 / 10 \\
-1 / 2 & -1 / 2 & 0 & 0 \\
3 / 10 & -3 / 10 & 4 / 5 & -1 / 5 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)_{2: 17 H} .
\end{align*}
$$

One can transform the atomic positions in the $1: 12$ and $2: 17 \mathrm{H}$ structures into those of the 3:29 structure. The relationships between the lattice parameters of the $3: 29$ and the $1: 5$ structure are

$$
\begin{align*}
& a=\sqrt{\left(2 a_{0}\right)^{2}+\left(c_{0}\right)^{2}} \\
& b=\sqrt{3} a_{0} \\
& c=\sqrt{\left(a_{0}\right)^{2}+\left(2 c_{0}\right)^{2}} \tag{8}\\
& \beta=\tan ^{-1}\left(\frac{2 a_{0}}{c_{0}}\right)+\tan ^{-1}\left(\frac{a_{0}}{2 c_{0}}\right)
\end{align*}
$$

Based on the above description, the structural relation between the 3:29 and the 1:5 structure can be plotted, as shown in figure 1. The indices of the $1: 5$ structure are described as ($h k t l$) with h, k, and t representing the three axes a_{1}, a_{2} and a_{3} in the basal plane and l representing the z axis. The indices h, k and t obey the equation $h+k+t=0$. The a and c axes of the 3:29 structure are in the $\left(a_{3}, c\right)$ plane of the 1:5 structure, whereas the b axis of the 3:29 structure is in the $\left(a_{1}, a_{3}\right)$ plane of the 1:5 structure. The 3:29 structure is built up from layers containing both R and Fe atoms (similar to the $z=0$ layer of the $1: 5$ structure) and layers of only Fe atoms (with the same arrangement as in the $z=1 / 2$ layer of the $1: 5$ structure) along the $[102]_{1: 5}$ direction. The main difference between the two structures concerns the mixed

Figure 1. Relations between the coordinates of the $1: 5$ and the $3: 29$ structure.

R- and Fe -atom layers. In these layers, there are two R sites, namely 2 a and 4 i . From the six R atoms around each R site in the $z=0$ layer in the $1: 5$ structure, four R atoms have been replaced by dumb-bell Fe atoms in the case of the 2 a R site, and three R atoms (in trigonal arrangement) in the case of the $4 i$ site.

3. Magnetocrystalline anisotropy

High-field magnetization measurements and single point detection techniques on the magnetically aligned samples showed that $\mathrm{R}_{3} \mathrm{Fe}_{29-x} \mathrm{~T}_{x}$ compounds have a comparably strong anisotropy in the plane [8]. Meanwhile, the magnetocrystalline anisotropies of the $\mathrm{Sm}_{3} \mathrm{Fe}_{29-x} \mathrm{~T}_{x} \mathrm{~N}_{y}$ nitrides are similar to that of $\mathrm{Sm}_{2} \mathrm{Fe}_{17} \mathrm{~N}_{x}$, which has a strong uniaxial anisotropy.

According to the theory presented by Birss [17], for a magnetically saturated single crystal (i.e. no domain walls in the crystal), the magnetocrystalline anisotropy energy E can formally be expressed as a series expansion:
$E=b_{i} \alpha_{i}+b_{i j} \alpha_{i} \alpha_{j}+b_{i j k} \alpha_{i} \alpha_{j} \alpha_{k}+b_{i j k l} \alpha_{i} \alpha_{j} \alpha_{k} \alpha_{l}+b_{i j k l m} \alpha_{i} \alpha_{j} \alpha_{k} \alpha_{l} \alpha_{m}+\cdots$
where α_{i} are the direction cosines of the magnetization relative to a rectangular Cartesian system of coordinate axes. The limitations of crystal symmetry are imposed on the tensor $b_{i j k} \ldots$ by means of equations of the form:

$$
\begin{equation*}
b_{i j k \ldots n}=\sigma_{i p} \sigma_{j q} \sigma_{k r} \ldots \sigma_{n u} b_{p q r \ldots u} \tag{10}
\end{equation*}
$$

where the σ are the symmetry operators. If there is no preferred direction in time, which is valid as magnetocrystalline anisotropy is a static property, then all property tensors of odd rank are zero.

Normally, ten generating matrices for the 32 crystal classes can be chosen as shown below:

$$
\begin{array}{ll}
\sigma^{(0)}=[1]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & \sigma^{(1)}=[\overline{1}]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
\sigma^{(2)}=\left[2_{y}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] & \sigma^{(3)}=\left[2_{z}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\sigma^{(4)}=\left[\overline{2}_{y}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] & \sigma^{(5)}=\left[\overline{2}_{z}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
\sigma^{(6)}=\left[3_{z}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right] & \sigma^{(7)}=\left[4_{z}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{11}\\
\sigma^{(8)}=\left[\overline{4}_{z}\right]=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] & \sigma^{(9)}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] .
\end{array}
$$

For crystals with cubic, tetragonal and hexagonal structures, the magnetocrystalline anisotropy can be described in terms of anisotropy constants [18], as summarized in table 1. For the monoclinic structure, there will be three possibilities for the point group; with generating matrix of $\sigma^{(3)}$ for the point group 2, $\sigma^{(5)}$ for the point group $m, \sigma^{(1)}$ and $\sigma^{(3)}$ for the point group $2 / m$ (see equation (11)). In the following, the forms of general polar tensors of second and fourth rank for this crystal symmetry are formulated. The non-zero components of these tensors may be written in compact form by using the notation of [17]:

$$
\begin{align*}
& b_{11}=b_{11} \\
& b_{22}=b_{22} \\
& B_{2}:{ }_{b_{33}}=b_{33} \tag{12}\\
& b_{12}(2)=b_{12} \\
& b_{1111}=b_{1111} \\
& b_{2222}=b_{2222} \\
& b_{3333}=b_{3333} \\
& b_{1112}(4)=b_{2111} \\
& B_{4}: b_{1222}(4)=b_{2221} \tag{13}\\
& b_{1122}(6)=b_{2211} \\
& b_{1133}(6)=b_{3311} \\
& b_{2233}(6)=b_{3322} \\
& b_{1233}(12)=b_{3312}
\end{align*}
$$

Table 1. Expressions for magnetocrystalline-anisotropy energy for various crystal systems.

Crystal class	International symbol of symmetry class	Magnetocrystalline-anisotropy energy
Triclinic [18]	1, $\overline{1}$	$\begin{aligned} & K_{1} \alpha_{1}^{2}+K_{2} \alpha_{2}^{2}+K_{3} \alpha_{3}^{2}+K_{4} \alpha_{1} \alpha_{2}+K_{5} \alpha_{2} \alpha_{3} \\ & \quad+K_{6} \alpha_{1} \alpha_{3}+\cdots \end{aligned}$
Monoclinic [this work]	$2, m, 2 / m$	$\begin{aligned} & K_{1} \sin ^{2} \theta+K_{2} \sin ^{2} \theta \cos 2 \phi+K_{3} \sin ^{2} \theta \sin 2 \phi \\ & \quad+K_{4} \sin ^{4} \theta+K_{5} \sin ^{4} \theta \cos 2 \phi+K_{6} \sin ^{4} \theta \sin 2 \phi \\ & \quad+K_{7} \sin ^{4} \theta \cos 4 \phi+K_{8} \sin ^{4} \theta \sin 4 \phi \end{aligned}$
Orthorhombic [18]	222, mm2, mmm	$\begin{aligned} & \sin ^{2} \theta\left(K_{1} \cos ^{2} \phi+K_{2} \sin ^{2} \phi\right)+\sin ^{4} \theta\left(K_{3} \cos 2 \theta\right. \\ & \left.\quad+K_{4} \sin ^{2} \phi \cos ^{2} \phi+K_{s} \sin ^{4} \phi\right) \\ & \quad+\sin ^{2} \theta \cos ^{2} \theta\left(K_{6} \cos ^{2} \phi+K_{7} \sin ^{2} \phi\right) \end{aligned}$
Cubic [18]	23, m3, 432, $\overline{4} 3 m, m 3 m$	$\begin{aligned} & K_{1}\left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}+\alpha_{1}^{2} \alpha_{3}^{2}\right) \\ & \quad+K_{2} \alpha_{1}^{2} \alpha_{2}^{2} \alpha_{3}^{2}+K_{3}\left(\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}+\alpha_{1}^{2} \alpha_{3}^{2}\right)^{2} \end{aligned}$
Tetragonal [18]	4, $\overline{4}, 4 / \mathrm{m}, 422,4 \mathrm{~mm}, \overline{4} 2 \mathrm{~m}, 4 / \mathrm{mmm}$	$K_{1} \sin ^{2} \theta+K_{2} \sin ^{4} \theta+K_{3} \sin ^{6} \theta+K_{4} \sin ^{4} \theta \cos 4 \phi$
Trigonal [18]	$3, \overline{3}, 32,3 m, \overline{3} m$	$\begin{aligned} & K_{1} \sin ^{2} \theta+K_{2} \sin ^{4} \theta+K_{2}^{1} \sin ^{3} \theta \cos \theta \cos 3 \phi \\ & \quad+K_{2}^{2} \sin ^{6} \theta \cos 6 \phi+K_{3} \sin ^{6} \theta \\ & \quad+K_{3}^{1} \sin ^{3} \theta \cos ^{3} \theta \cos 3 \phi \end{aligned}$
Hexagonal [18]	6, $\overline{6}, 6 / \mathrm{m}, 622,6 \mathrm{~mm}, \overline{6} \mathrm{~m} 2,6 / \mathrm{mmm}$	$K_{1} \sin ^{2} \theta+K_{2} \sin ^{4} \theta+K_{3} \sin ^{6} \theta+K_{4} \sin ^{6} \theta \cos 6 \phi$

where the notations of the type $b_{1122}(6)$ denote the six components which may be obtained from the component ' 1122 ' by unrestricted permutations of its indices. It follows directly from equation (12) that

$$
\begin{equation*}
b_{i j} \alpha_{i} \alpha_{j}=b_{11} \alpha_{1}^{2}+b_{22} \alpha_{2}^{2}+b_{33} \alpha_{3}^{2}+2 b_{12} \alpha_{1} \alpha_{2} . \tag{14}
\end{equation*}
$$

Similarly, it follows from equation (13) that

$$
\begin{align*}
b_{i j k l} \alpha_{i} \alpha_{j} \alpha_{k} \alpha_{l} & =b_{1111} \alpha_{1}^{4}+b_{2222} \alpha_{2}^{4}+b_{3333} \alpha_{3}^{4}+4 b_{1112} \alpha_{1}^{3} \alpha_{2}+4 b_{1222} \alpha_{1} \alpha_{2}^{3} \\
& +6 b_{1122} \alpha_{1}^{2} \alpha_{2}^{2}+6 b_{1133} \alpha_{1}^{2} \alpha_{3}^{2}+6 b_{2233} \alpha_{2}^{2} \alpha_{3}^{2}+12 b_{1233} \alpha_{1} \alpha_{2} \alpha_{3}^{2} . \tag{15}
\end{align*}
$$

In the above expression, the factors $2,4,6$ and 12 arise from the multiplicity implicit in the sets of relations of B_{2} and B_{4}.

Since the three direction cosines are connected by the equation $\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=1$, equation (9) may be rewritten as

$$
\begin{align*}
E=b_{33}+b_{3333} & +\alpha_{1}^{2}\left(b_{11}+b_{33}-2 b_{3333}+6 b_{1133}\right)+\alpha_{2}^{2}\left(b_{22}-b_{33}-2 b_{3333}+6 b_{2233}\right) \\
& +\alpha_{1} \alpha_{2}\left(2 b_{12}+12 b_{1233}\right)+\alpha_{1}^{4}\left(b_{1111}+b_{3333}-6 b_{1133}\right) \\
& +\alpha_{2}^{4}\left(b_{2222}+b_{3333}-6 b_{2233}\right)+\alpha_{1}^{2} \alpha_{3}^{2}\left(2 b_{3333}+6 b_{1122}-6 b_{1133}-6 b_{2233}\right) \\
& +\alpha_{1}^{3} \alpha_{2}\left(4 b_{1112}-12 b_{1233}\right)+\alpha_{1} \alpha_{2}^{3}\left(4 b_{1222}-12 b_{1233}\right) . \tag{16}
\end{align*}
$$

If the c-axis is assumed to be the polar axis then the polar and azimuthal angles θ and ϕ are related to the direction cosines α_{i} by the equations

$$
\begin{align*}
& \alpha_{1}=\sin \theta \cos \phi \\
& \alpha_{2}=\sin \theta \cos \phi \tag{17}\\
& \alpha_{3}=\cos \theta .
\end{align*}
$$

Equation (16) can be rewritten, to fourth order in the α_{i}, in the form
$E=K_{0}+K_{1} \sin ^{2} \theta+K_{2} \sin ^{2} \theta \cos 2 \phi+K_{3} \sin ^{2} \theta \sin 2 \phi+K_{4} \sin ^{4} \theta+K_{5} \sin ^{4} \theta \cos 2 \phi$

$$
\begin{equation*}
+K_{6} \sin ^{4} \theta \sin 2 \phi+K_{7} \sin ^{4} \theta \cos 4 \phi+K_{8} \sin ^{4} \theta \sin 4 \phi \tag{18}
\end{equation*}
$$

with the anisotropy constants

$$
\begin{align*}
& K_{0}=b_{33}+b_{3333} \\
& K_{1}=\frac{1}{2} b_{11}+\frac{1}{2} b_{22}-b_{33}+b_{3333}+3 b_{1133}+3 b_{2233}-2 b_{3333} \\
& K_{2}=\frac{1}{2} b_{11}-\frac{1}{2} b_{22}+3 b_{1133}-3 b_{2233} \\
& K_{3}=b_{12}+6 b_{1233} \\
& K_{4}=\frac{3}{8} b_{1111}+\frac{3}{8} b_{2222}+b_{3333}+\frac{3}{4} b_{1122}-3 b_{1133}-3 b_{2233} \tag{19}\\
& K_{5}=\frac{1}{2} b_{1111}-\frac{1}{2} b_{2222}-3 b_{1133}+3 b_{2233} \\
& K_{6}=b_{1112}+b_{1222}-6 b_{1233} \\
& K_{7}=\frac{1}{8} b_{1111}+\frac{1}{8} b_{2222}-\frac{3}{4} b_{1122} \\
& K_{8}=\frac{1}{2} b_{1112}-\frac{1}{2} b_{1222} .
\end{align*}
$$

Taking only the K_{1} term into account in equation (18), E is found to be a minimum or a maximum for [001], depending only on the sign of K_{1}. However, when all $\sin ^{2} \theta$ terms with K_{1}, K_{2} and K_{3} are taken into account, there will be eight preferential directions with a tilt angle of $\pi / 4$ with respect to the $x y$ plane. This can be seen from the following anisotropy energy expressions for three directions derived from equation (18):

$$
\begin{align*}
& E_{100}=K_{0}+K_{1}+K_{2} \\
& E_{110}=K_{0}+K_{1}+K_{3} \tag{20}\\
& E_{001}=K_{0}
\end{align*}
$$

where the subscripts on the left-hand side refer to the direction of the magnetization.
It is easy to see that when we choose an angle $\eta=\tan ^{-1}\left(K_{2} / K_{3}\right)$ equation (18) can be changed to the form obtained by Courtois et al from the symmetry analysis [19, 20]:

$$
\begin{gather*}
E=K_{0}+K_{1} \sin ^{2} \theta+K_{2} \sqrt{K_{2}^{2}+K_{3}^{2}} \sin ^{2} \theta \cos 2(\phi+\eta)+K_{4} \sin ^{4} \theta+K_{5} \sqrt{K_{5}^{2}+K_{6}^{2}} \\
\times \sin ^{4} \theta \cos 2(\phi+\eta)+K_{7} \sqrt{K_{7}^{2}+K_{8}^{2}} \sin ^{4} \theta \cos 4(\phi+\eta)+\cdots \tag{21}
\end{gather*}
$$

The studies on the single crystal $\mathrm{Y}_{3}(\mathrm{Fe}, \mathrm{V})_{29}$ have shown that the above anisotropy energy expression for the $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$-type compounds can explain the magnetization curves along $a_{1: 5}, b_{1: 5}$ and $c_{1: 5}$ axes [19,20]. More single crystals are needed for further study on the crystal structure and magnetocrystalline-anisotropy properties of the $\mathrm{R}_{3}(\mathrm{Fe}, \mathrm{M})_{29}$-type compounds.

Acknowledgments

One of the authors, N Tang, would like to thank Dr F Huang for useful discussion. This work was carried out within the scientific exchange program between China and the Netherlands, and was supported by the national Natural Science Foundation of China.

References

[1] Collocott J, Day R K, Dunlop J B and Davis R C 1992 Proc. 7th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys (Canberra, 1992) p 437
[2] Ivanova G V, Shcherbakova Ye V, Belozerov Ye V, Yermolenko A S and Teytel Ye I 1990 Phys. Met. Metall. 70 63
[3] Shcherbakova Ye V, Ivanova G V, Yermolenko A S, Belozerov Ye V and Gaviko V S 1992 J. Alloys Compounds 182199
[4] Li H S, Cadogan J M, Xu J M, Dou S X and Lin H K 1993 Int. Conf. on Application of the Mössbauer Effect (Vancouver, 1993) paper 15-29B
[5] Hu Z and Yelon W B 1994 J. Appl. Phys. 766147
[6] Hu Z and Yelon W B 1994 Solid State Commun. 91223
[7] Kalogirou O, Psycharis V, Saettas L and Niarchos D N 1995 J. Magn. Magn. Mater. 146335
[8] Yang Fuming, Nasunjilegal B, Wang Jianli, Zhu Jiangjun, Qin Weidong, Tang N, Zhao Ruwen, Hu Bo-Ping, Wang Yi-Zhong and Li Hong-Shuo 1995 J. Phys.: Condens. Matter 71679
[9] Pan Hongge, Chen Changpin, Wang C S, Han Xiufeng and Yang Fuming 1997 J. Magn. Magn. Mater. 170331
[10] Wang Yi-Zhong, Hu Bo-Ping, Liu Gui-Chuan, Li Hong-Shuo, Han Xiu-Feng and Yang Chang-Ping 1997 J. Phys.: Condens. Matter 92787
[11] Han Xiu-Feng, Yang F M, Pan H G, Wang Y G, Wang J L, Liu H L, Tang N, Zhao R W and Li H S 1997 J. Appl. Phys. 817450
[12] Han Xiu-Feng, Pan Hong-Ge, Liu Hong-Li, Yang Fu-Ming and Zheng Yi-Wei 1997 Phys. Rev. B 568867
[13] Johnson Q and Smith G S 1968 Lawrence Radiation Laboratory Report UCRL-71094
[14] Pettifor D G 1989 Physica B 1493
[15] Villars P 1985 J. Less-Common Met. 11011
[16] de Boer F R, Boom R, Mattens W C M, Miedema A R and Niessen A K 1988 Cohesion in Metals (Amsterdam: North-Holland)
[17] Birss R R 1964 Symmetry and Magnetism (Amsterdam: North-Holland)
[18] Kalvius G M and Tebble R S (eds) 1979 Experimental Magnetism vol 1 (New York: Wiley)
[19] Courtois D, Amako Y, Givord D, Cadogan J M and Li H-S 1998 J. Magn. Magn. Mater. 177995
[20] Courtois D, Givord D, Lambert-Andron B, Bourgeat-Lami E, Amako Y, Li H-S and Cadogan J M 1998 J. Magn. Magn. Mater. 189173

